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This report consists of three volumes which present the theory
and application of a valuable data reduction tool , the analysis of
covariance. Volume I introduces the analysis of covariance as a general
linear nixiel (GU4) and then expands the nodel to incorporate the multi-
variate case , unerjual sample size, and missing observations on the
response variable. Volume I also covers the analysis of covariance for
nonparametric data .

Volumes II and III were prepared by the Departhient of Statistics,
Oklahana State University, Stiliwater , Okiahana 74074 , under Air Force
Contract F08635—76-C-0154 , with the Air Force Armament Laboratory,
Armament Developnent and Test Center , Eglin Air Force Base, Florida
32542. The contract dealt with the developnent and programing of the
methodology for evaluating multiple variable data with missing
observa tions on dependent and independent variables by the analysis of
covariance method. The methodology also covers case for unegual sample
size. This ~~rk was begun in January 1976 and ccinpleted in Decamter 1976.
This is Volume II.

This technical report has been reviewed by the Information Officer
(01) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for
publication.
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SECTION I

INTRODUCTION AND PROBLEM STATEMENT

The main purpose of this study is to extend work done on estimation

and hypothesis testing problems for multivariate linear models describing

situations that cannot be analyzed under the Standard Multivariate (SM)

general linear model. Kleinbaum (9) has developed the theory to deal with

the Growth Curve Multivar late (GCM) model and the More Genera l Linear

Multivari ate (MGLM) model which is applicable to the prob l em of missing

observations among the dependent vari ab l es in the SM mode l wi th known

design matrix. The author proposes to extend the results of Kleinbau mn to

handle an analysis of covariance model wi th missing observations among

the independent variables or covariates as wel l as among the dependent

vari ables.

The Multivariate Analy sis of Covari ance (MAC) mode l is based on the

multivariate linear model

E(Y) = Xc& + Z$ and

Var(Y) = ‘n ~ (1)

where Y is an nxp matrix composed of p-variate responses on n

individuals ,

X is an nxm
~ 

known design matrix of rank R(X) = r
~
(�m

~
�n)

corresponding to the classificatory variables of the model ,

a is an m
~
xp matrix of unknown parameters,



Z is an nxm1 matrix composed of concomi tant vari ab les, in

the sense that the cons tant eleme nts of Z are not necessar ily
plann ed in advance by the experimenter. R(Z) = r

~
(<m 1 <n),

~ is an m
~xP 

matri x of unknown concomitant parameters,

~ ~ rs~ 
is a pxp positive definite matri x of usually unknown

parameters which represents the variance-covariance matrix

of any row of Y ,
and AsB is the Kronecker Product of the matri ces A and B.

It is clear from Equation (1) that , in the MAC model , the measurements on

di fferent individ uals are assumed to be uncorrelated whereas the measure-

ments of the p response variates on the same individual may be correlated.

The MAC model may be more concisely represented by using the follow-

ing definitions:

A = [x Z] is the nxm design matri x constructed by hori zontally

augmenting the design matrix X by the matri x Z where

y = [
~
] is the mnxp matrix of unknow n parameters constructed

by verti cally augmenting the parameter matri x ~ by the para-

meter matri x f3.

Thus , the MAC model may be written as fol lows :

E( Y ) = Ay and

Var(Y) = ‘n ~ (2)

VARIATE-WISE REPRESENTATION OF THE MAC MODEL

The MAC model may be alternatively represented in a variate-wise

representation by making the following definitions :

.~ is the nxl vector which denotes the 5th (s = l ,...,p) column

of Y ,
2



and is mxl vector which denotes the 5th (s = 1 ,... ,p) column of y.

Thus , V = [
~~ ~2

and 
~~~[i1 12 . . .

so that the MAC model may be described as
(3)

E(;) = A~~~ , s = 1 ,2 , . . .  , p and

Cov(~.,..~;) = 
~rs’n for all r,s = l ,2,...,p.

Thus , the variate—wise representati on consists of p univariate models

corresponding to the p variates. These p separate univariate models

are related by the covariances between the different variate pairs .

VECTOR REPRESENTATION OF THE MAC MODEL

The vector representation of the MAC Model is obtained by making the

following definiti ons :

H’12
Lety= . and 1=

~~~

Thus ,
E(~) = 0

A1 
and (4)

Var (i) =

where DA = I , A and c~ =E a

ESTIMATION AND HYPOTHESES TESTING IN THE MAC MODEL

Rao(12) us i ng general i zed inverses has shown for the SM model that

the best linear unbiased estimate (BLUE) of a linear function of the

elements of the parameter matri x , when estimable , is given by the sum

of the BL uE ’ s obtained ~eparate1y from the univariate models resulting3 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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from the variate-wise representation . For estimati ng an estimable linear

set of elements of the parameter matrix, Roy(13) suggests using the sum

of the BLUE’ s for the linear sets obtained separately from the univariate

models. The results of Rao and Roy can easily be extended to the MAC

model.

The genera l linear hypothesis for the MAC model can be expressed in

the same form as is usual for the SM model for which a number of test

procedures have been proposed. For example , Wilk ’s Likelihood Ratio ,

Hotell ing ’s Trace (T0
2), and Roy ’s Largest Root are the tests most coninonly

used in practice. Explanations of these tests can be found in standard

tex ts on multi var i ate analys i s suc h as Anderson (3) and Morr i son (10 ).

EXPERIMENTAL SITUATIONS IN WHICH THE MAC MODEL DOES NOT APPLY

The MAC model , as defined in Equations (1), (2), (3), and (4), involves
three assumptions which are not always met in practice due to failure

or inability to obtain compl ete observations on all experimental uni ts.

These assumptions are:

1. A response is observed on each variate on all experimental units.

2. The design matrix , X , is the same for each response variate .

3. Each concomi tant response is observed on each experimental

unit.

In general ,the above assumptions are met in the initial design

of an experiment unless it is physi cally impossible or uneconomical to

observe a response on each variate . But even when the experiment is initially

designed to conform to the above assumptions , missing observations can

occur among the independent as well as the dependent variable s due to the

occurrence of some unfortunate event such as the dropping of a test tube,

the fa ilure of an elec tronic Ins trument, or the death of a subject before
4

h~~
. ~~~~~~~~~~~~ ~~~~. 
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res ponses are observ ed on eac h var iate. These events could be cons idered

random in the sense that thei r occurrence i s equally li kely for each
ex per imental unit .

Any fa i lure of the exper imental data to conform to the above
assumptions yields the MAC model inappropriate for analyzing the

experiment based on all observed data, because any ex per imental

units on wh ich one or more dependent and/or independent res ponses are
missing requires the total deletion of that experimental unit. Thus ,

the development of a procedure utilizing all the sample information

would be a valua b le contribut ion to the analysis of such exper iments.

5
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SECTION II

LITERATURE REVIEW

Allan and Wishart (1) were probably the first to consider the problem

of missi ng data in statistical ana lys i s , whereas Yates ( 16)  was the first

to present a general solution using a least—squares method of substituting 1

for missing values in a designed experiment. Wi lks (15) discussed both

a maximum likelihood approach and a method-of-moments approach to the

problem of missing values in regression analysis.

Zyskind , Kempthorne, et al (17) present a very thorough treatment

of the analysis of covari ance technique , first introduced by Bartlett (4),

to a univari ate linear model wi th missing observations occurring on the

dependent variable. They approach the problem by partitioning the

model

E(y) Xc* and (5)
Var(~) = I

so that it may be written

E(~) = 
~~~~~~~~~~~~ (6)

where ~ i s an nx l ve ctor of observa tions ,
X = i s an nxp known des i gn matrix of full rank p<n ,

2
and ~ is a pxl vector of unknown parameters.

In general the computational formula for the fitting 0f a full model

of the form [EquatIon (2)] is used where the data corresponding to the vec-

tor X 1cz of m components are mi ssing or are simply not available. Thus ,

I -.~~~ ~~~~~~~~~~~~~~ __ —.,. .~~~~~~~~ - . —-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—
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the model to be fitted is E(~2) = X2.i, but a solution to the normal equa-

tions X 2 X2 ~i = ~~‘ 2 ~2 
is not immediate , whereas a solution to the normal

equations corresponding to the full set of data is standard . They capitalize

on the availabl e information by consideri ng the fol l owing analysis of Co-

variance mode l form:

E(~
m) = (~~)c~ + (

m )
~ 

(7)
2 n-m ,m

where is an mxm identity matrix. Since the sum of squares of deviations

of the observations from their expected values for the model [Equation (7)] and

the model E(~~) = X2c~ are minimized for Identical sets of val ues for the

vector ~~, the computati ons requi red for fitting the model E(~2) = X 2a

can be performed on the corresponding analysis of covari ance model. Then

using the facts: (1) that for the model

E(~) = Xc~ + Z~ (8)

the full set of norma l equations

x ’ x ~ + x ’ z 8  = (9)

Z’Xc~+ Z’ZB = Z’ y (10)

can be equivalently expressed as

X ’Xa + X’Z~~ X’y

[(I —X(x’x YX ’)zJ’ [(I — x(x’xyx)z]& = [(I — X(X ’Xyx ’)Z]’ ~ (11)
and (ii) that if A ’ a is an estimable parametri c function for the model

x
E(y 2) = X2ct and if for the model E(,y) = ( l ) (X

’)c* the BLUE of 
~~~~~2

is given by:

+ ‘ 
~l2!l~~1 ~~~2 ’

the BLUE of A ’cz for the model E(~2
) = X2cz is given by

(13)

where 8 is obtained by solving the error normal Equations (11) where

7

~ 
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0
Z = [_I

~~
O] and ~ = (c) . (13)

Thus , B in Equation (13) plays the role of in the point

estimation of A ’ j for the model E(~) = (
~~~

) = Xct. It would

appear that one could easily extend the results of Zyskind , Kempthorne

et al to handle the problem of missing responses among the dependent

vari ables of a multivariate linear model. However, this is not the case

due to the dependence of their solution upon the fact that the residual

sum of squares for the model [Equation (7)] and the model E(~~) = X2ct are

identical for identical sets of values for the vector a which is not

guaranteed In the multivar iate case due to the covar iate structure among
responses from the same experimental unit.

Haitovsky (7) compares two alternative methods for dealing wi th the

problem of missing observations among the independent vari ables and/or the

dependent vari ables in a univariate regression model. One method (Method

1) is simply to discard all incomplete observations and then apply the

ordinary least-squares technique to the complete observations . The other

method (Method 2) consists of computing the covariances between all pai rs

of vari ables , each time using only the observations having values of

both vari ables , and to use these covariances in constructing the system

of normal equations.

Cov(x., x~)~ = Cov(x1 ,y), 
(j ,j = 1 , • . . , m), where Cov(x 1x~) (14)

is the mxm covari ance matrix in which the (1~~ ) th element (i ,j = 1 ,... ,m)

is computed from the measurements coninon to both X j  and x~ (i~j) as well

as from all the existing measurements on x1 for i=j, and simi l arly for

Cov (x~,y) (1 = 1 ,... ,m). The comparison was made using Monte Carlo

techniques since Method 2 does not have optimal statistical properties

and since the deri vation of its distribu tion theory is intractable. Comparing

the two methods with regard to unbiasedness and efficiency i ndi cated
8
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that Method 2 wa~ superior only In the ri~re ca ’~ in ~iii ith ~ to 1U r)~rcent

of the observations were comp lete and hence available for use in Method 1.

By decomposing the Mean Square Error (MSE) into one term accounting for

bias and the other accounting for the variance when bias is ignored ,

Haitovsky was able to show that the vari ance term was far more important

in the large difference observed in the two methods . He concluded

that , although the bias affects the relevance of the inference , the

major problem with Method 2 is caused by the inconsistency introduced into

the system of normal Equations (14).

Buck (6) treats the problem of missing values among the dependent

vari ables in a multivari ate linear model by estimating the mi ssing values

by regression techniques and then calculating a revised variance-covariance

matrix. He represents the sample of n experi mental unit s by expressing

the responses , y1~ (1 = 1,2 ,... ,n; j  = 1 ,2 ,...,p), i n  the form of an

nxp matri x , Y , in which some of the elements are missing. Assuming that

k of the n p-variate responses are complete , he lets these fo rm the fi rst

k rows of y and then calculates the expected value of 
~rj 

(r = l,2 ,...,k )

by formi ng for each value of j ,  the multiple regression of the ~th variable

on the other p-l variables from the set of observations consisti ng of the

first k rows of V. Thus , he obtains p equations which can be expressed

as

E(Y r j
) = 

~j~ ’ri’ ~‘r2’ “~~~~
‘ 

31rj - l’~’r,j+ l ’ ~‘rp~ 
(15)

The missing values are then estimated as follows . If the 1th unit has

the ~th observation missing, it s value , y1~ , is estimated by one of the

Equations (15) substitutIng for 
~rj ’ 

that Is,

E(~1~ ) = 

~~~~~ 
y12, . ..,  y1~~1, ~~~~~~~~ 

y
~~).

This formulation assume s only one missing value in each incomplete response

L _ ________________  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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but can be extended to the case in which units have more than one missing

value . Buck shows that if the value y~ is missing for a proportion A

of all experimental units , and the predicted values are substituted and

a new variance-covari ance matrix calculated , then the expectations in this

matrix are the same as they would be if there were no missing values ,

except for the variance v ’ ,~ of y
~ which, In terms of expectat ions, is

ii = V 
~~

where v
j~ 

is the ~th diagonal element of the variance covariance matrix ,

say V , that would result if there were no missing elements and c~ is the

~th diagonal element in

Beale and Little (5) propose a solution to the problem of missing

observations in the dependent variables of a multivariate normal linear

model based on the Missing Information Principle of Orchard and Woodbury

(11) which i nvolves approximati ng the Maximum Li kelihood solution through

an iterative technique . The argument of Beale and Little follow s that

of Orchard and Woodbury but emphasizes that the effect of the principle

is to replace a maximization problem by a fixed point problem. They construct

a conditional likelihood function composed of the likelihood equation for

known values pl us a conditional likelihood of unknown values given the

known values and then show that a stationary solution to the conditional

likelihood equation is equivalent to the Maximum Likelihood solution

based on the original likelihood equation . Thus , assuming the nxp observa-

tion matri x , Y, is distributed as a Multi variate Normal , they group the

observations into two vectors ~ and z with a joint distribution depending

on the vector 0 of parameters , where ~ has been observed but z has not

been observed. To approximate the Maximum Likelihood Estimate (MLE)
10 
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C , of 0, based on the log likelihood L(~ ; ~
), they suggest maximizing the

expected value of L(z,i;o) where z is treated as a random variable with

some known distribution. Thus , letting f(z/~;o) denote the probability

density function for the condi tional distribution of z given ~ and e,

and letting L(z/~;o) denote ln[f(z/~ ;o)] , then
L(z ,~;o) = L(y;o) + L(~Jy;o). (16)

A distribution is defined for z by taking any assumed value for e along

with the observed value of ~ and one can then take expectations 01 both

sides of Equation (16), IntegratIng with respect to z. This Is expressed by

E{L(z,~;o)/~;~~} = L(~;o) + E{L(z/~;o)I~ ; ~~}. (17)

They then find the value of e that maximizes the left hand side of

Equation (17) and write

= Ø(~~~~) 
(18)

s i nce ~~ may depend on Q~
. Thus , Equation (18) represents a transfor-

mation from the vector to the vector from which the Missing

F Information Pri nciple originates. The Missing Informati on Pr i ncip le
involves estimating e by a fixed point of the transformation , namely

a value of o such that e =

As menti oned in the introducti on , Klelnbaum (9) proposes a solution

to the problem of estimation and hypothesis testi ng for the MGLM

model which is applicable to the case i nvolving missing observations among

the dependent vari ables in the SM model wi th known design matrix. He

wri tes the SM model in the form

E(Y ) = Xc~ and (19)

Var(Y )= I~~a z

where X is an nxm known design matrix of rank R(X) = r(<m<fl) ,

~ is an mxp matri x of unknown parameters ,
11
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and E = 
~~~~~ 

is a pxp positive definite matrix of usuall y unknown

parameters representing the variance-covariance matrix of any

row of V.

Letting .~~ be the nxl vector denoting the 5th column of V and

the mxl vector denoting the ~
th column of ~, he writes the variate-wise

representation of the SM model as

E(;) = X~~~ , Va r(y~) = 
~~ ‘r ’ 

~ = 
~~ ~~ (20)

Cov (y.~,,y~) = ers In when r�s.

Then stacking the observation vectors on top of one another, the vector

representation of the SM model becomes

E(y) = D
~

cz (21)

Var(~) =

where Dx = a X and c~ = a

From these representations Kl ei nbaum devel ops a general form of the model

which allows the omission of responses from variates not observed on a

given experi mental unit. For the case involvi ng mis sing observations

among the dependent variables of an SM model , he constructs the

general i zed model as follows. Assuming there are n experimental units

and p response variates V 11 ... ,V~ in total , he lets ~~, s = 1 ,... ,p be

the vector of length 
~~ 

say , corresponding to all observations on

in the entire experiment and lets X~ be the N5xm design matrix corresponding

to 
~ 

, i.e., x
5 

is determined from X by oni~iitting the rows which

corres pond to mi ss ing values of ~~. He then lets the NrXNs (r < s) matri x

~rs denote the incidence matri x of 0’ s and l’ s defined by 
~rs 

= 

~~ij(rs )
where

(1 if the 1th component of z and the ~th component of
3(rs) are observed on the same experimental unit ,

otherwise
12
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Thus , the variate-wise representation of the MGLM model is given by

E(~~) = ~~~~ Var (~~) = 
~ SS

1
N

5 

(22)

= t
~rsQrs~ 

r < s

Cov(z r,z s) = °rs~
’rs ’ r > S, r ,s = l ,...,p.

and with the above definitions the vector representation of the MGLM is

given by:

xl

E ( z ) =  and Var(z) = (23)

x
p

where

Z (N l )  = : ‘ ~ (Mx l )~ :

ro ll INi ~l2 Q l2  .

°l 2~ i2 022 1N2 
. . . ~~Q2~

~~lp~ ip  °2p~2p . : . Opp IN~~

13
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~~~

and M =  m~.s~l s l

Kleinbau rn then shows that the unique BLUE of any estimable linear

function or linear set of the treatment parameters is given by a linear

function or linear set, respectively, which i nvolves the unknown

parameters of the vari ance matri x ~. In fact, restri cting linear

estimates to be known functions not involving c~ requires additional

restrictive conditions on the model . Therefore, he considers Best

Asymptoti cal ly Normal (BAN ) estimation which is a nonlinear method

of estimation using estimates of ~ and yielding vari ances that are,

in large samples, the minimum that could be achieved by linear estimators

if c~ were known.

For testi ng linear hypotheses in the MGLM model , assuming the

data is normally distributed , Kleinbaum suggests using test statistics

which are quadrati c forms called Wald Statistics and are constructed

from BAN estimators of linear functions of the treatment parameters.

Since the asymptotic distribution of a Wald Statistic is a central

chi-square variable , the test criteri a yield cM-square tests when the

sample s ize i s large.

Attempts have been made by several authors to obtain Maximum Likelihood

Estimates (MLE) of the parameters in a multivariate linear model with

missing observations among the dependent vari ables . However , most of

these methods are applicable to only very specifi c models. For instance ,

Anderson (2) describes an iterative technique for obtaini ng the MLE’s

of 
~~~ (pxl) and c~ when X~ is an (N 5xl) vector of ones. Hocking and

Smi th (8) have developed a procedure for obtaining BAN estimators of

~ and ~ for the mult ivariate linear model wi th missing observations among

the dependent vari ables and they have shown for a special case that their
14
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approach yields the maximum likelihood solutions obtained by Anderson.

Their estimation procedure involves obtaining initial estimates of the

parameters from th~ group of observations with no missing values and then

modi fying these initial estimators by adjoining the information in all

the remaining groups in a sequential manner by the addition of linear

combi nations of zero ex pec tati ons. However , for purposes of a genera l

computer program , extremely cumbersome notation would be required to

express the formulae for cal culating the estimators at each stage. In

fact, Hocking and Smi th have only considered a few special cases which

Involve simply structured models.

15
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SECTION III

PROPOSED SOLUTION

It appears that , if It were possible to generalize the results cited

in the literature which deal w i th missing observations , at best one would

have procedures for handl ing missing values among the dependent and/or

independent variables in a univariate analysis of covarlance model or

missing values among the dependent vari ables in a multivarlate analysis

of covariance model. The general form of the SM model for missing

observa ti ons among the dependent variables , as discussed by Srivastava

(14) and Kleinbaum (9), does, however, appear to be valuable as an initial

representation of a MAC model in which missing observations occur among

the dependent and/or i ndependent variables . In fact, the results

of Kleinbaum for estimation and hypothesis testing in the MGLM can be

generalized to the More Genera l Multivariate Analysis of Covariance

(MGMAC) model by employing a pro~~dure for dealing wi th the missing in-

dependent vari ables simi lar to that employed by Zyskind , Kempthorne , et

al to deal with missing dependent variables in a univariate linear model .

THE MAC MODEL WITH MISSING DEPENDENT AND/OR MISSING INDEPENDENT
VARIABLES (MGW~C)

For purposes of clarity and simplification, the general form of

the MGMAC mode l will be presented by firs t rewriting the various forms

of the MAC model , then generalizing to the General Multivari ate Analysis

of Covariance (GMAC ) model (i.e., the MAC wi th missing dependent vari ables),

16
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and finally by extending the GMAC to the MGMAC model (i.e., with missing

dependent and/or independent variables). To make the presentation as

brief as possible , definitions of variables and parameters previously

defined w ill be omitted unless specifically needed for clar if icat ion.

The Multivariate Analysis of Covariance Model (MAC ) can be repre-

sented by

E ( Y )  = x~ + z~ 
(24)

V a r ( Y )  =

or alternati vely by

E ( V )  = Ay where A = X Z]

Thus , the variate-wise representation of the MAC is given by

E( ~~~) = A~~, s = I , . ..  ,p and (26)

Cov (~~;) = 

~rs’n for all r,s, = 1 ,... ‘p.

and the vector representation is given by

E(y ) = and Var(~ ) = 
(27 )

where

DA = I p e A  and 
~~

= E e I n .

To obtain the general form of the GMAC , assume there are n experi-

mental units and p response variate s V 1 , . ..  ~~ in total. Let ~~, S = 1 , . . .

be the vector of length N
~
, say , corresponding to all observations on V 5

in the entire experiments Let A5 1~ xm~’ 
S = 1,... ,p be the design matrix

/

correspondi ng to ~~~, i.e., A~ 
is determined from A by deleting those

rows which correspond to missing values of 
~~ 

Let QrsI’N xN ~ 
r < S

‘ r s
denote the inci dence matri x of 0’ s and l’ s def ined  by Q 

~ 
= (q 1. )r 

~( rs)
where

= 1 If the 1th component of and the ~th ccmponent of
(rs ) 

are observed on the same experimental unit
1,0, otherwise.

17



Then the variate-wise representation of the GMAC is given by

E( ~~~) = A
5~~ Var(~~) = °ss 1N5 

(28)

Cov(~ ,,z )  = 
~rs~rs ’ r < s

Cov(~~,~~) = 
~rs~

’ rs ’ r > s r,s = l,...,p.

The vector representation of the GMAC is given by

E ( z )  = D1 and Var(z)  = (29)

where 
— r A l 

r~

1i
0(NxMY . ‘ 1(Mxl)

L~~i-‘

~ l l  ‘N
1 ~ 12~~12 

.

= ~ l2 Q l2  G~~~If~
(NxN) . .

c~1 Q’ 1 ~2~
Q’2~ . . .

and M = m p .
s=l

To obtain the general form of the MGMAC, assume that the design

matrix A = [x ~ ZJ of the MAC model has £t missing observations

in the ~th coluni~, (t = m~
+l , ... , m

~
+Tn

~
). Then In the design matrices

As(N xm) of the variate-wise representati on of the GMAC model the ~
th

column will have ets = ~ t - k5 , where k5 is the number of experimental

units in which both the independent variable in column £ of A
~ 

and the

dependent variable on variate V~ are mi ss ing. Thus , A
~ 

would have

18
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ni
t5 

= 
~ e~s missing values .

Then rep lace A~ by F5 where F
~ 

is derived from A
~ 

by augmenting A
~ 

(with

0’s in place of mi ssing values) by a matrix A~ of dimension (N5xt5
) compose d of

t~ col umns each with a one In the row position corresponding to the

mi ss ing values in A
~ 

and zeros elsewhere. [Note: F
~ 

has dimens ion

(N5xm5) where in5 = m + t5 .) Thus , the variate—wise representation

of the MGMAC is given by

E( ~~~) = F
5~~~, V ar(~~) = 

~rS ’N5 
(30)

Cov (~.,.. ~~ = 
~rs~rs ’ r < s

Cov (~ .~,~~) = 
~rs~ ’s , r < s, s = 1 , . . .

where = 
[is] 

and where S is a (t 5 xl ) vector of unknow n

parameters due to the missing values in A~.

The vector representation of the MGMAC model is given by:

E ( z )  = F~ and Var(z)  = ci (31 )

F1 
-

where F(~4xM) = F
2 

=

-~ F~

N = N
~ 

and M = m
s=l s=l ~

EST I MATION FOR THE MGMA C MODEL

Theorem 1: If 0 = H’~~ = 
s!l ~~~ 

Is estimab le, and if E is known then
H’~ has a unique BLUE given by

19
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= ~~
‘
~~~~= ~‘(~‘ci~v) F’ci 1z

whose varlance-covariance matrix is gi ven by

Var(o) =

where C5 is a known (m5xl) vector (s = 1,..., p).

If we restrict our estimators to be known linear functions of z,

then we cannot use the e above unless it is independent of ci

Theorem 2: For the MGMAC model e is not independent of ~2 unless the

fol lowing conditions are sat isf ied:

C’ (F’ F YF’ Q c V(F’
5
), r < s and

C’
5

(F’
5

F Y F’ Q ~ V(F ’5), r > s where

~r s r~~s~ ’ r < S (r ,s = 1 ,... 
‘

is defined as before.

If the above conditions are not satisfied, one is lead to consider

nonlinear methods of estimation which use estimates of z and which give
variances that are, in large s amples , the minimum that could be achieved
by linear estimators if ~ were known.

Theorem 3: A BAN estimator which is unbiased for any estimable set

e = H’~ , is given by
= H’~~ = H’ (F’ 1

F) F’~~~~~ (32 )
where c~ is obtained from ci by substituting the elements of Z 

~ rs~
gi ven in Theorem 4 below for the correspon ding elements of E =

Theorem 4: For the MGMAC model , a consistent and unbiased estimate of

E Is given by E = 

~
‘rs~ 

where

°ss 
~~~~~ ~~s [‘N - Fs ( F ’ F )

~F’ s1 ~~~~‘ ~ = 1 ,... ‘p
and

L 

20 
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~rs T
~

_ R(F r~~ 
Z ’ s [‘

~ rs 
- FrS(F~rSF rS

YFI
rS] ~~r , r ~ s

(r ,s = 1 ,2 ,...

where Ur (>2 ) is the number of experimenta l units on which V is observed ,

Nrs(>2) is the number of experi mental units on which both V r and
V~ are observed together ,

•
~
t’S(NrXl) 

is the vector of all observations on V r~

-~-rs(N xl)’ r�s is the vector of observations on Vr which correspond
tor~nits on which both and V5 are observed together ,

F (N xm ) is the design matri x corresponding to ~~~ and

Frs(N xm ) is the design matri x corresponding to

The proof of the above theorem fol l ows easily from Kleinbaum (9).

Theorem 5: For the MGMAC model , the asymptotic variance matrix of any BAN

estimator of an estimable linear set H’E~, where H(Mxw) is of full rank

w , is given by

H’ (F ‘ cia F)

Note : H’(F’cl~~F)H is the same as the variance matri x of the unique

BLUE set e = H’~ for H’~ when ci is known.

TESTING LINEAR HYPOTHESES FOR THE MGMAC MODEL

Theorem 6: For the MGMAC model , let H’~~be es timable where H(M~~) Is known

and of ful l rank w. Then , if the null hypothesis is H0 : H’~ = 0,

Wn = (H’~~) ’  [ H ’ ( F ci~~~F~~~H] 
— l ( H’ ~~) (34)

is asymptotically distributed as a central cM—square variable with w

degrees of freedom , where

21
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is any positive definite consistent estimator of Z,

c~ and F are defined by the vector representation and H’~ i s any BAN
estimator of H’~ . This result is easily extended from Kleinbaum (9).

To test the hypothesis H0: H’~ = 0, we may thus reject H0 if

Wn � ~~~~~ and accept otherwise.

NOTE : All the above theorems follow easily from similar theorems

by Kleinbaum (9).

22
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SECTION IV

~ 1 EXAMP LE

The following example is given to i l lustrate the procedures outlined

in Section III for testing hypotheses and for obtaining parameter estimates .

The data consists of a Dortion of data from an exercise in Morrison (10).

The sami l sample size was chosen only in order to make the prob lem manageable

for hand computations . The dependent variables represent two character-

istics of urine specimens of young men classified into two groups according

to their degree of obesity . One measure , specifi c gravity , was selected

as a concomi tant vari able. The observations on these variates and the

concomi tant vari able are given below (blank spaces represent missing

observa tions):

Group I Group II

“2 X Y
1 Y 2 X

17.6 5.15 24 18.1 9.00 31
13.4 5.75 32 19.7 5.30
20.3 4.35 17 16.9 9.85 32
22.3 7.55 30 23.7 3.60 20

20.5 8.50 30 19.2 18

18.5 18.0 4.40 23

12.1 5.95 25 14.8 7.15 31

12.0 6.30 30 15.6 7.25 28

10.1 5.45 28 16.2 5.30 21

3.75 24

23
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If there were no missing observations, the model could be written in

the form of Equation (24) or (25). However, since observations are missing

from columns of Y and A (or Z), wr iting the model in the form of Equation (25)

results in blanks in the V and A matrices as shown below:

E ( Y)  = Ay arid (35~
Var(Y)  = I a where

17.6 5.15 1 0 24
13.4 5.75 1 0 32
20.3 4.35 1 0 17
22.3 7.55 1 0 30
20.5 8.50 1 0 30
18.5 Blank 1 0 Blank
12.1 5.95 1 0 25
12.0 6.30 1 0 30
10.1 5.45 1 0 28

V = Blank 3.75 , A = [x ~ z]= 1 0 24
18.1 9.00 . 0 1 31
19.7 5.30 0 1 Bl ank
16.9 9.85 0 1 32
23.7 3.60 0 1 20
19.2 Blank 0 1 18
18.0 4.40 0 1 23
14.8 7.15 0 1 31
15.6 7.25 0 1 28
16.2 5.30 0 1 21

r -
~

= = 
11 21 and E = ~l1 a l2

L~i I
12 22

L 12 22J

L~~ ~2l

Transforming to the vector representation [Equation (29)] illuminates the

problem 0f missing observations among the dependent variables , but blanks

remain among the independent variables as shown below :

E(z) = Dy and (36)

V a r ( z )  = ci where

24
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17.6 -~~~

13.4 5.15
20.3 5.75
22.3 4.35
20.5 7.55
18.5 8.50
21.1 5.95
12.0 6 30

= wi th 
~l 

= 10.1 and = 5:45
18.1 . 3.75— 19.7 9.00
16.9 5.30
23.7 9.85
19.2 3.60
18.0 4.40
14.8 7.15
15.6 7.25
16.2 5.30

1 0 24
1 0 32 1 0 24
1 0 17 1 0 32
1 0 33 1 0 17 F
1 0 30 1 0 30

— 1 0 Bl ank 1 0 30
[ 1 0 25 1 0 25

1 0 30 1 0 300 = A with A 1 = 1 0 28 and A 2 = 
1 0 28

0 1 31 1 0 24
0 1 Blank 0 1 31
0 1 32 0 1 Blank
0 1 20 0 1 32
0 1 18 0 1 20
0 1 23 0 1 23
0 1 31 0 1 31
0 1 28 0 1 28
O 1 21 0 1 21 

—

[~ll1 [~21

~~~ 
=J ( with 11 = Ia l2  I and .12 = 

~22
L 2 J  LBll] ~2l

and

= _~ i i ’l8 o 12 Q12 wi th

~22~l7

25 
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To transform to the vector representation [Equation (31)] of the MGMAC

model , A1 i s replaced by F1, 
~ 

is replaced by 
~
, A2 is replaced by F2 and

is replaced by ~ as shown below:

E(z) = F~ and (37)

Var(z) = ci where

rz l
_1

= as defined before,
[~~2J

1 0 24 0 0 1 0 24 0
1 0 32 0 0 1 0 32 0
1 0 17 0 0 1 0 17

F ~ 1 0 30 0 0 1 0 30 0
F = 

1 wi th F,= 1 0 30 0 0 and F.) = 1 0 30 0
1 0 0 1 0 1 0 25 0
O 0 25 0 0 1 0 30 0
1 0 30 0 0 1 0 28 0
1 0 2 8 0 0  1 0 2 4  0~0 1 3 1 0 0 0 1 3 1  O~0 1  0 0 1  0 1 0 1~0 1 3 2 0 0 0 1 3 2 0
0 1 2 0 0 0  0 1 2 0  0~0 1  18 0 0  0 1 2 3 0
0 1 2 3 0 0  0 1  31 0 ;
O 1 31 0 0  0 1  2 8 0 ;
O 1 28 0 0 0 1 21 ~
O 1 21 0 0 —

26
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wi th 

~i 

=

~ 

~~ 
and 

~2

11 18 l2 Q l2
and ci = U Q I  

— — — — - as defi ned earlier.
12 12 I 22 17

~ j1mation of Z

Us ing Theorem 4, a consistent and unbiased estimator

= 
~~~~ (38)

of £ is obtained by letting

a 11 = N1-R(F1J ~1 - F1 (F1 ’F1 YF1 ’~ ~-i

a22 = N2-R(F2J ~2 E’u2 - F2 (F 2
1F

2 )- F2 1] z2 and

a21 = a 12 = N12 R ( F 12 ) ~l2  ~
IN - F12 (F 12 ’F 12)

-
F12’] ~2l where

N1 = 18, N2 = 17, N12 = N21 = 16

17.6 5.15 17.6 5.15
13.4 5.75 13.4 5.75
20.3 4.35 20.3 4.35
22.3 7.55 22.3 7.55
20.5 8.50 20.5 8.50
18.5 5.95 12.1 5.95
12.1 6.30 12.0 6.30

z1 = 12.0 , 2., = 5.45 , z = 10.1 z =—
‘ 10.1 —12 18.1 ‘ —21 9.00 ‘

18.1 9.00 19.7 5.30
19.7 5.30 16.9 9.85
16.9 9.85 23.7 3.60
23.7 3.60 18.0 4.40
19.2 4.40 14.8 7.15
18.0 7.15 15.6 7.25
14.8 7.25 16.2 5.30
15.6 5.30
16.2 — 
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F1 and F2 are defi ned as before and

1 0 24 0
1 0 32 0
1 0 17 0
1 0 30 0
1 0 30 0
1 0 25 0
1 0 30 0
1 0 28 0

F1., F.),= 0 1 31 0
“ ‘‘ 0 1 0 1

0 1 32 0
O 1 20 0
0 1 23 0
0 1 31 0
0 1 28 0
0 1 21 0

Substitution of the above values into Equation (38) results In

= f~3.9694 1.73761

L 1.7376 l.3775J

ESTIMATION OF ORIGINAL PARAMETERS

A BAN estimator which is unbiased for H’j = = is given by

8 11

~2l

H’~~= H’(F’ci~~F~~F’ ci 1z where (39)

ci is obtained from ci by substituting the elements of ~ given above
for the corresponding elements of ~

: 1 0 0 0 0 0 0 0 0
: 0 1  0 0 0 0 0 0 0

0 0 1  0 0 0 0 0 0  
—

S J F 1 •H = ~~~0 0 0 0 0 1 0 0 0  F = L F a n d z = 1 ..
0 0 0 0 0 0 1 0 0 L~20 0 0 0 0 0 0 1 0

28
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Substitution of the appropriate values into Equation (39) yields

al l  21.3524

a 12 23.0662

B11 —0.2071
=

~21 -4.0121

a22 -3. 2103

821 0.3 686

In order to have obtained the parameters introduced into the model

by the missing observations among the independent variables in addition

to the orig inal parameters , H = I~ would have been used in Equation (39).

HYPOTHESIS TEST - NO OVERALL GROUP EFFECT

The joint null hypothesis of no overal l group effect, w hi ch can be
wri tten

~ 1

H
~~
: H’ j  = : :;~ 

= [g] where

0 ~1l
-1 0
0 0

H =  g g and ~~~~~ ~l l

0 1  11
O —1 612 F
0 0  a
o 0 21

a22
821
621

29



~11
Is tested by computing

Wn = ~~~~‘~~~~~ ‘ [H ’(F~~~ F) H]~ (H’ç) (40)

Substitution of the appropriate values into Equation (40) results

in = 3.037 which yields an observed significance level between 0.1

and 0.25 based on the fact that Wn is asymptotically distributed as a

central chi-square with R(H) = 2 degrees of freedom. Based on the

results of this test, it coul d be concluded that at the comonly acce pted

l evels of significance there is not sufficient evidence to reject the

joint null hypothesis of no difference in the characteristics of urine

specimens of young men in Group I and Group II.

30

.

~ 

_ _  _ _ _ _



APPENDIX A

LIST OF SYMBOLS

a(q x 1) is a (qx 1) column vector, and a ’ is the corresponding

(1 x q) row vector .

A(p x q) = (a~~) is a (p x q) matri x wi th a1~ as the element in the

~
th row and ~th column .

A = (A
~~

) is a parti tioned matri x in which 
~~ 

is the sub—matrix

in the ~th row and ~th col umn.

R(A) is the rank of the matrix A.

V(A)  is the vector space spanned by the rows of A.

A ’ is the transpose of A.

tr A is the trace of A.

A~ is the unique inverse of a square matri x A of full rank.

is any generalized inverse of the matri x A and is defined

by A/CA = A.
A e B i s the Kronec ker Product of the matri x A and B

defined by A s B = (a1~B) where A = (a id )

is the identi ty matrix of order q.

is the (pxl) vector of zeros .

°p,q Is the (pxq) matri x of zeros.
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For x = (x 1 ,. . . ,~~~
) ‘  and ~ = (y~,... ‘~m~

’
Coy (x,~) is the (n x ‘ii ) matrix with Cov(x1~y~) in the ~

th row

and ~th column;

Var(x) is the (n x n) matrix Cov (x,x).

For Y(n x p) = (y
~~

) , a matrix of random vari ables ,

E(Y)  is the (n x p) matri x of expectations of the elemtents

of Y , i.e., E ( Y )  = (E~1~ ) ;

Var(Y)  is the (np x rip) variance-covari ance matrix of

the (np x 1) vector defi ned by putting the rows

of V underneath each other In a long col umn vector

x .... N~ (~ ,E) means that the random variable x has a p-vari ate

multinormal distri bution with mean vector ~ and

variance-covariance matri x E.

is the square root of a symmetri c matri x ci defined

by c~ = C’AC where C is an orthogonal matrix

and A is a diagonal matri x such that ci = C’A2C.

is read as “the variable t with left subscript

is read as “the variable t with left subscript

2. and right subscript s’ .

32

I -

______________________________ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~



APPENDIX B

GLOSSARY OF TERMS

Gi ven : A p-variate random sample, 
~
‘(nx p) of size n from a population

with probability density function f(Y ,0), 0 £ 9 (parameter

space , then :

An estimator, T, of the parameter g(0), 0 c 6 is a function of

V whose range contains the range of g(0).

An unbiased estimator , T, of g(e) is one such that

E(T) = g(0) , ~ 0 cG

Denote the class of unbiased es timators of g(0) by Ug~
A Minimum Variance Unbiased Estimator (MVUE) of g(e) is a I c Ug such that

Var(T) ~ Var(T * ) , YT* C U9 and 0 e G.

Let Vg be the class of all linear unbiased estimators of g(0).

Then T ~ Vg if and only if

( I )  I c U9 and

(ii) I c a’Y where a is some constant vector.

A Best Linear Unbiased Estimator (BLUE), T, of g(0) is a I c V
9 

such that

Var(T) ~ Var(T *) , .~ 1* C V9 and 0 e 0.

A sequence of random variables (Zr : n 1, 2, • •• )  conver ges in
distribution to the random vari able Z with distribution function

F whenever

u r n  F~(z) = F(z), for all continuity points
n-,.p A

x of F. This is denoted by Zn ~ F, where Fn is the distribution

function of Z~(n = 1, 2 , •.•) .

33
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An est imator 
~~(ux l ) based on a sample of n observations is

said to be a Best Asymptotic Normal ~ANJ estimator for the
parameter 

~-(uxl ) 
= (oi ,  •• ‘ , o

~
)’
~ 
provided

v’~ B~½ 
~~ 

- 

~ 
N~(OJ ) where

BriCu ) = Fisher ’s Information Matrix

= E 
~2 log $fl 1 , where

3 0 2

is the true value of o,

is the likelih ood function for the sample1

B
has asymptoti c dispersion matrix
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